

Demod I&Q vs Time from RSA306

- Eye Diagram from RSA306
- Trellis Diagram from RSA306

3.8 FSK signal Output

Start Freq	1GHz	Stop Freq	1GHz	Step Freq	-
Amplitude	0dBm	Repeat Time	10ms	Duration Time	-
Mode	Single	e Freq w/o Pulse	Symbol Rate	40.00KHz	

FSK data rate will be 40KHz/b, changing I&Q step count will change FSK data rate.

Demod I&Q vs Time from RSA306

Eye Diagram from RSA306

Constellation Diagram from RSA306

3.9 Digital Modulation with I&Q Engine

I&Q pattern from TSG

Eye Diagram from RSA306

Constellation Diagram from RSA306

3.10 QPSK Signal output

Page **20** of **33**

6: From pop window to select IQ QAM64.txt file.

6: Phase	Mod	in function keys, 🖑	72 in secon	d function k	eys.
IQ QAM64_1.txt				✓ Text File (*.txt)
	¥	Demo QPSK.txt	3/12/2013 0:39	人中人口	I ND
			2/12/2015 5:20	<u>→</u> + <u>→</u> ±±	1 1/10
		Demo 8PSK.txt	3/12/2015 7:18	文本文档	1 KB
		Demo 16QAM.txt	5/30/2015 6:54	文本文档	2 KB
		IQ QAM64_1.txt	6/7/2015 10:23	文本文档	4 KB

Status block will be:

Vincit Omnia Veritas

Start Freq	1GHz	Stop Freq	1GHz	Step Freq	-
Amplitude	0dBm	Repeat Time	10ms	Duration Time	-
Mode	Single Freq w/o Pulse Mod			Symbol Rate	1.00MHz

64QAM data rate will be 64MHz/b, changing I&Q step count will change QPSK data rate.

Constellation Diagram from TSG

Eye Diagram from RSA306

Constellation Diagram from RSA306

3.14 Frequency Sweeping without Pulse Modulation

Start Freq	0.98GHz	Stop Freq	1.02GHz	Step Freq	1MHz
Amplitude	0dBm	Repeat Time	100ms	Duration Time	-
Mode	Freq Sv	weeping w/o Pul	se Mod	Symbol Rate	1.00MHz

Following image will be shown the sweeping signal without Pulse modulation.

Vincit Omnia Veritas

Sweeping signal without I@Q Mod

Sweeping signal with I@Q Mod

2	Time Overview	
Time:	0.0 -	
Analysis v	- MKC -0.64 dBm -092 567 ms	4992 867 ms
Offset:		0.000 s
-54.714 us		
Length:	-20.0 -	
298.909 ms		
o dB/dv:		
(CONCO)		
	-40.0 -	
	-60.0 -	
	-80.0 -	
	109.0 -	
Autoscale	to Bastinos -34 371 me	a Scala: 346 735
	e Postori, settera ne	· scale. 546.735

Sweeping timing from RSA306

3.15 Frequency Sweeping with Pulse Modulation

Status block will be:

Start Freq	0.98GHz	Stop Freq	1.02GHz	Step Freq	1MHz
Amplitude	0dBm	Repeat Time	100ms	Duration Time	2ms
Mode	Freq Sweeping with Pulse Mod			Symbol Rate	1.00MHz

Following image will be shown the sweeping signal with Pulse modulation

9248 163 Street Surrey, BC V4N 3C9 604-637-2167 info@triarchytech.com

Sweeping signal without I@Q Mod Sweeping signal with I@Q Mod

3.16 Frequency hopping without Pulse Modulation

Vincit Omnia Veritas

If sweeping signal need to add I&Q modulation, go into the next step.

- I& Q Sel in function keys, 🖑 in second function keys. Δ٠
- Phase Mod in function keys, 🖑 in second function keys.

Phase Mod in function keys, 172 in second function keys. Status block and hopping table will be:

Start Freq	-	Stop Freq	-	Step Freq	-
Amplitude	0dBm	Repeat Time	100ms	Duration Time	-
Mode	Freq Hopping w/o Pulse Mod			Symbol Rate	1.00MHz

Unit	Value	Seq.	Unit	Value	Seq	Unit	Value	Seq.
MHz	995.42406	3	GHz	1.00241389	2	MHz	980.04024	1
GHz	1.01288419	6	GHz	1.00359705	5	GHz	1.00361465	4
MHz	981.09158	9	GHz	1.00629555	8	GHz	1.01725103	7
GHz	1.01561083	12	GHz	1.01338382	11	MHz	997.08948	10
GHz	1.00780819	15	GHz	1.01651821	14	GHz	1.01666755	13
MHz	984.77436	18	MHz	999.30686	17	GHz	1.0196523	16
GHz	1.00551275	21	MHz	997.08754	20	GHz	1.01297846	19
MHz	982.53485	24	MHz	999.53563	23	MHz	993.8529	22
GHz	1.01405061	27	MHz	989.48419	26	MHz	993.03726	25
GHz	1.00114536	30	MHz	980.12647	29	GHz	1.00580039	28
MHz	986.59005	33	GHz	1.00071159	32	MHz	996.99247	31
GHz	1.01757388	36	MHz	990.72528	35	GHz	1.00010725	34
MHz	985.99083	39	MHz	984.2772	38	GHz	1.01040576	37
MHz	994.05319	42	MHZ	980.76053	41	GHz	1.01101083	40
GHz	1.00708734	45	MHz	990.30063	44	MHz	989.67876	43
GHz	1.00658076	48	MHz	997.34149	47	MHz	981.23568	46

Following image will be shown the hopping signal without Pulse modulation

Hopping signal without I@Q Mod

Hopping signal with I@Q Mod

Hopping timing from RSA306

3.17 Frequency Hopping with Pulse Modulation

Page 24 of 33

Hopping signal without I@Q Mod

Hopping signal with I@Q Mod

Hopping timing from RSA306

3.18 S11/S21 measurement with spectrum analyzer

The S11/S21 key is reserved for multi device measurement, it is not ready now. Such as working with RF power meter or spectrum analyzer. But it need to setup synchronize with spectrum analyzer when it is scanning.

3.19 Example for GSM signal output

2: Sm GSM-pulse

in TSG configuration folder and open this file.

Status block and hopping table will be:

Start Freq	900MHz Stop Freq 900MHz		Step Freq	-	
Amplitude	0dBm	Repeat Time	Repeat Time 4.615ms		577us
Mode	Single	Freq with Pulse	e Mod	Symbol Rate	271.70KHz

GSM data rate will be 271Kb with GMSK modulation, repeat time will be 4.6ms, duration time will be 577us.

GSM signal with I@Q Mod

One slot of GSM signal

3.20 Pulse modulation signal output

The Pulse signal output port can generate pulse signal, when mode setup to xxx with pulse mod. The parameter of pulse

, following will be pulse signal output measured by scope.

3.21 SIN/Triangle/Spiral waveform signal output

VSG6G1/VSG2G1/TSG4G1 also can output low frequency signal, using I&Q raw data file, I&Q port can output any kind of low frequency signal, the demo setting will be sin waveform, triangle waveform, and spiral waveform, output waveform will be shown at following:

You can output a lot different waveform by define I&Q raw data file, it is more like arbitrary signal generator. The frequency can be setup I*Q step count to fine turn. The total sampling length are also impact with output frequency.

The frequency=72MHz/(step count*sampling length).

3.22 Clock selection

Internal clock reference will be 12MHz, and Main processor will be working at 72MHz, maximum the I&Q symbol rate will be 2.4MHz (when I*Q step count set at 30).

When clock select at internal, it is also the default setting, clock port will be output 12MHz reference clock.

When clock select at external, it needs to input 10MHz reference clock at clock port, the clock level need to be larger than 5dBm.

Internal clock reference will be 12MHz, and Main processor will be work at 72MHz, maximum the I&Q symbol rate will be 2.4MHz (when I*Q step count set at 30).

When clock select at internal, it is also default setting, clock port will output 12MHz reference clock.

When clock select at external, it need input 10MHz reference clock at clock port, the clock level need to be larger than 5dBm.

Vincit Omnia Veritas

3.23 I&Q Selection

I&Q port selection will have three choice:

1: None: it will turn off any I&Q modulation, only CW signal will be output.

2: Internal: internal I&Q waveform will connect to modulation IC.

3: External/Fast: External setup will need I&Q signal input from I&Q port, it can generate very fast modulation, the signal bandwidth can be setup to 500MHz. Fast setup will be reserved for high speed I&Q data generator option. It is an accessory of VSG6G1, it can generate up to 100MHz data rate modulation signal.

3.24 Hardcopy Operation

Click the hardcopy, the image of setup can be store within jpg file. File can be found at document folder.

4 I&Q Engine

4.1 I&Q Engine principle

What is I&Q engine?

I&Q engine is to generate I&Q raw data based on input data stream and modulation. I&Q raw data will send to DAC to generate I&Q waveform which will be needed for I&Q modulator.

So that data stream will be input, and I&Q raw data will be output conditional upon the type of modulation.

The block diagram of I&Q engine will be follow:

First, data stream will be go into S/P block, which is series to parallel section, most of modulation need this S/P section to setup I&Q mapping.

After S/P section, the parallel data may be need to do certain types of process, such as Gray code conversion, this section will be Data converter.

The parallel data will be mapping with I&Q data pattern to generate I&Q raw data. The mapping pattern is depend on the modulation, a lot of text book will discuss I&Q data pattern. Studying the data pattern can be generated a lot of different kind of modulation.

For example, 4FSK generator:

1: convert series data into 2 bits parallel data,

2: generate 4 I&Q pattern with 36 samples, which related to F1, F2, F3, F4.

3: mapping the I&Q pattern based on the input data stream, then generate the raw I&Q data.

4.2 I&Q file configuration

There are two kind of I&Q file which can be used by TSG program:

1: I&Q raw data file, which is only two rows of I&Q raw data. I&Q raw data will sent to DAC to generate I&Q waveform. 2: Data stream file, which will input to I&Q engine to generate I&Q raw data file.

4.21 I&Q raw data file

I&Q raw data file format is very simple, only two row of data with comma in txt file, first data is Q data, second data is I data.

I&Q data will be DAC input, the DAC will be 12 bit with 3.3V range, and DAC setup range will be 0~1.1V, reference bias will be 0.55V.

So that DAC input range will be 0^{1365} (4095/3), the reference bias of DAC will be 683. Following data shows the PM file and data waveform:

684,233 494,275

242 200

Vincit Omnia Veritas

343,388		
255,543		
233,702		
260,838		
312,938		
365,1002		
404,1036		
417,1046		
404,1036		
366,1002		
313,939		
261,839		
233,703		
255,544		
342,390		
492,276		
682,233		
872,275		
1023,388		
1111,543		
1133,702		
1105,838		
1053,938		
1000,1002		
961,1037		
947,1047		
961,1037		
999,1004		
1052,941		

The modulation frequency will be 72MHz/(step count*I&Q sample amount) If step count=200, and I&Q sample amount=36, modulation frequency will be 10MHz.

Any analog modulation and low frequency signal can be generated by I&Q raw data file. Define the I&Q raw data by math formula. you can generate any kind of waveform, the working method of I&Q raw data file is same as Arbitrary Signal Generator, it have two channels to generate signal.

I&Q raw data will also can be generated by I&Q engine with or without I&Q channel shift.

Click the system in the utility keys, you will find I&Q AMP shift and I&Q Phase shift in the second function keys.

The default value for shift is 0. If you use default value, I&Q raw data file generated from I&Q engine will be not shift. For example, input data stream file of <a>Demo 16QAM.txt 5/30/2015 654 ... into the I&Q engine, output will be raw data file <a>Demo 16QAM_rawdata.txt 8/17/2015 3:17 ... The constellation image will be:

If change I&Q AMP shift to 5 and I&Q Phase shift to 10, output will be raw data file Demo 16QAM_rawdata_A5_P10.txt 8/17/2015 3:17 The constellation image will be:

The I&Q amp and phase shift will be used for compensation of I&Q unbalance. When VSG6G1 is working on the band 2, I&Q channel will generate unbalance due to the Mixer stage. You have to use function of I&Q amp and phase shift to improve the EVM parameter.

I&Q AMP shift will be amplitude shift of I&Q channel with unit in percentage. I&Q Phase shift will be phase shift of I&Q channel with unit in degree.

4.22 Data stream file

Data stream file will be include input data, I&Q pattern and some settings.

When you open the data stream file, you will find four section:

- 1: Data input
- 2: S/P setting
- 3: converter setting
- 4: I&Q pattern data

the file format will be shown at following:

S/P_mode, 4, 3 Code_converter, 1 PatternI_000, 683, 762, 838, 910, 977, 1037, 1088, 1129, 1159, 1177 PatternQ_000, 1183, 1177, 1158, 1128, 1087, 1036, 977, 910, 837, 761 PatternI_001, 183, 189, 208, 238, 279, 330, 390, 456, 529, 650 PatternQ_01, 183, 189, 208, 238, 279, 330, 390, 456, 529, 650 PatternI_010, 682, 604, 527, 455, 388, 329, 278, 237, 207, 189 PatternQ_010, 183, 189, 208, 238, 279, 330, 390, 457, 529, 606 PatternQ_011, 681, 603, 527, 455, 388, 329, 278, 237, 207, 189 PatternQ_011, 681, 603, 527, 455, 388, 328, 278, 278, 237, 207, 189 PatternQ_011, 681, 603, 527, 455, 388, 328, 278, 278, 237, 207, 189 PatternQ_011, 681, 603, 527, 455, 388, 328, 278, 278, 237, 207, 189 PatternQ_101, 183, 189, 207, 237, 278, 328, 388, 455, 527, 603 PatternQ_101, 183, 1177, 1159, 1129, 1088, 1037, 977, 910, 838, 762 PatternQ_101, 183, 137, 1159, 1129, 1088, 1037, 977, 910, 838, 762

Vincit Omnia Veritas

Data input:

One parameter (M), one data stream will be setup in following format: Binary_IN, M, binary data stream M is one bit, it is FSK mode. M=1, it is MSK/GMSK, modulation index is 0.5 M=2~15, it will be FSK/GFSK mode, modulation index is 0.5*M Total I&Q buffer will be 4Kb, so that the Maximum length of data will be 4Kb/M When binary data will total length of binary input. P will be parallel length of modulation.

S/P setting:

Two parameter (X,Y) will be setup in following format: S/P_mode,X,Y Y will be length of parallel data in bit. X will be setup S/P mode. X=1, Bypass mode, for all kind of binary modulation such as FSK, PSK and ASK. X=2, Group mode, series to parallel conversion with group mode. If input data is : 1100101011101000, Y=4, date in parallel will be 1100 1010 1110 1000

I,Q data in parallel will be: 1100

1010

1000

X=3, interleave mode, series to parallel conversion with interleave mode. If input data is : 1100101011101000,

Y=4, date in parallel will be 1(11) 1(21) 0(31) 0(41) 1(12) 0 (22) 1(32) 0(42) 1(13) 1(23) 1(33) 0(43)

1(14) 0(24)0(34) 0(44)

I,Q data in parallel will be:

1010

1111

0110

0000

X=4, MSK mode. It is special setup for MSK, GMSK, FSK, GFSK, OQPSK, SFSK..

Converter setting:

Vincit Omnia Veritas

One parameter (**Z**) will be setup in following format: Code convertor, **Z** Z will be setup converter mode.

Z=1, Bypass mode, it means converter will do nothing, just pass through.

Z=2, Gray code mode, do gray code calculation: G(N) = (B(n)/2) XOR B(n)

Z=3, GMSK filter, if you want to generate GMSK modulation, select it.

I&Q pattern data:

The I&Q pattern data format will be:

Patternl_number,datal1, datal2, datal3, datal4, datal5, datal6, datal7, datal8, datal9, datal10

PatternQ_number,dataQ1, dataQ2, dataQ3, dataQ4, dataQ5, dataQ6, dataQ7, dataQ8, dataQ9, dataQ10will

Number length will be parameter X, parallel data length. If X=4, total I&Q pattern will be 16 set.

DataIn and DataQn, will be pattern data, n will be pattern amount in length.

I&Q pattern will be defined by modulation, analyze the modulation, then you can get I&Q pattern.

The following will be partial of I&Q pattern:

Patternl_00000,683,762,838,910,977,1037,1088,1129,1159,1177

PatternQ_00000,1183,1177,1158,1128,1087,1036,977,910,837,761

Patternl 00001,183,189,208,238,279,330,390,457,529,606

PatternQ_00001,684,762,838,911,977,1037,1088,1129,1159,1177

Patternl_00010,682,604,527,455,388,329,278,237,207,189

PatternQ_00010,183,189,208,238,279,330,390,456,529,605

Patternl_00011,1183,1177,1158,1128,1087,1036,976,909,836,760

PatternQ_00011,681,603,527,455,388,328,278,237,207,189